谭山,男,湖南娄底人。2007年3月毕业于西安电子科技大学,获模式识别与智能系统专业博士学位。2007年6月至2011年6月分别在美国休斯敦大学、马里兰大学从事博士后研究。2011年6月回国工作。谭山博士主要从事生物医学成像、图像处理、机器学习和人工智能等领域的研究,具体包括高分辨荧光显微成像、PET/CT影像分析、CT重建及基于医学影像的癌症治疗效果评估和预测等。曾荣获全国百优博士论文提名奖(教育部、国务院学位委员会,2009)、全国高等学校科学研究优秀成果奖(自然科学一等奖,教育部,2009)、陕西高等学校科学技术奖(一等奖,陕西教育厅,2009)。与北京大学分子医学研究所合作,谭山博士课题组提出的Hessian结构光超分辨荧光显微成像算法是目前成像时间最长、时间分辨率最高、最灵敏的超高分辨结构光荧光显微成像技术之一,相关成果发表于《Nature Biotechnology》等期刊,并入选“2018年度中国光学十大进展”。
讲授课程:
数字图像处理、人工智能进展、科学研究方法导论、文献检索与科技论文写作
主持的部分项目:
[1] 高分辨荧光显微成像的信号恢复理论与算法研究, 国家自然科学基金,面上项目,2021.1-2024.12,主持;
[2] 锥形束CT图像重构中的最优多重正则理论及算法研究, 国家自然科学基金,面上项目,2017.1-2020.12,主持;
[3] PET图像盲分割问题的理论和算法研究, 国家自然科学基金,面上项目,2014.1-2017.12,主持;
招生信息:
欢迎热爱学术研究且数学基础较好的同学报考博士或硕士研究生,本科专业不限。同时接收本科生(理、工类)进行科研培训。有意者请Email联系。
部分科研成果:
[1] 全国优秀博士学位论文提名论文奖(2009)
[2] 全国高等学校科学研究优秀成果奖自然科学一等奖(2009)
[3]Modeling Pathologic Response of Locally Advanced Esophageal Cancer to Chemoradiotherapy Using Spatial-Temporal FDG-PET features, Clinical Parameters and Demographics,the 54th Annual Meeting of the AAPM, Best in Physics, 2012.
[4] 超快、长时程超分辨率海森结构光照明显微镜,中国光学十大进展(2018年) (谭山课题组负责结构光超分辨荧光显微成像算法的设计及实现,北京大学分子医学研究所陈良怡课题组负责硬件平台搭建及相关生物实验)
[5] Tumor Co-Segmentation in PET/CT using Multi-Modality Fully Convolutional Neural Network, IOP Publishing Top Cited Paper Award (China) (2021)
部分已发表文献:
[1] F. Xu and S. Tan*, "Deep learning with multiple scale attention and direction regularization for asset price prediction," Expert Systems with Applications, vol. 186, p. 115796, 2021.
[2] H. Liu, X. Liu, J. Lu, and S. Tan*, "Self-Supervised Image Prior Learning with GMM from a Single Noisy Image," in IEEE/CVF International Conference on Computer Vision (ICCV), 2021. (Full Oral Presentation, 3.4% acceptance rate)
[3] L. Li, W. Lu, Y. Tan, and S. Tan*, "Variational PET/CT Tumor Co-segmentation Integrated with PET Restoration," IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 4, pp. 37-49, 2020.
[4] J. Liu, X. Huang, L. Chen, and S. Tan*, "Deep learning–enhanced fluorescence microscopy via degeneration decoupling," Optics Express, vol. 28, pp. 14859-14873, 2020/05/11 2020.
[5] X. Zhao, L. Li, W. Lu, and S. Tan*, "Tumor Co-Segmentation in PET/CT using Multi-Modality Fully Convolutional Neural Network," Physics in medicine and biology, vol. 64, p. 015011, 2019. (IOP Publishing Top Cited Paper Award (China))
[6] H. Liu and S. Tan*, "Image Regularizations Based on the Sparsity of Corner Points," IEEE Trans Image Process, vol. 28, pp. 72-87, Jan 2019.
[7] X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan*, L. Chen*, "Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy," Nature Biotechnology, vol. 36, p. 451, 04/11/online 2018. (成像时间最长、时间分辨率最高、最灵敏的超高分辨结构光荧光显微成像技术之一,入选2018年中国光学十大进展。算法及软件专利由华中科技大学持有。专利号: 201710200970. X,专利权人:华中科技大学。)
[8] B. Chen, K. Xiang, Z. Gong, J. Wang*, and S. Tan*, "Statistical Iterative CBCT Reconstruction Based on Neural Network," IEEE Trans. Medical Imaging, vol. 37, pp. 1511-1521, Jun 2018.
[9] L. Liu, X. Li, K. Xiang, J. Wang, and S. Tan*, "Low-Dose CBCT Reconstruction Using Hessian Schatten Penalties," IEEE Transactions on Medical Imaging, vol. 36, pp. 2588-2599, 2017.
[10] T. Sun, N. Sun, J. Wang*, and S. Tan*, "Iterative CBCT reconstruction using Hessian penalty," Physics in medicine and biology, vol. 60, pp. 1965-1987, Feb 12 2015.